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Changes to the relative value of curriculum topics, when using computer algebra systems in 
secondary school mathematics, have been previously considered in several studies (e.g. Artigue, 
2002; Stacey, 2003). This paper extends these findings to an examination of particular topics in 
undergraduate mathematics, as part of a wider study investigating issues of integrated technology at 
the tertiary level. This study suggests that issues of curricular value are a critical factor in the 
successful implementation of integrated technology, and that a re-examination of the relative values 
of fundamental topics remains a significant challenge for undergraduate mathematics in a rapidly 
evolving technological environment. 

A study by Oates (2004) identified the variety of ways in which integrated technology 
is interpreted in the literature. Responses from an exploratory survey of undergraduate 
mathematics colleagues conducted for this pilot study were used to propose an initial 
framework for describing integrated technology. Following this earlier study, a wider 
international survey of undergraduate mathematics educators was conducted, that received 
responses from forty-one tertiary institutions representing eight countries (see Oates, 
2009). In addition to examining further the elements identified in the pilot study, this latter 
survey aimed to investigate a number of factors subsequently identified in the literature, 
particularly those associated with the use of technology at the tertiary level. These issues 
include student instrumentation (Artigue, 2002; Stewart et al., 2005); the effect of research 
mathematicians’ beliefs about mathematical knowledge, technology and pedagogy on their 
use of technology (Anguelov et al., 2001; Keynes & Olsen, 2001; Kersaint et al., 2003); 
and the relationship between mathematicians’ experience with different technologies 
within their own research domains and their pedagogical technical knowledge (PTK). PTK 
is characterised as the necessary knowledge of the principles and techniques required to 
teach mathematics using a given technology (Hong & Thomas, 2006). 

A taxonomy of integrated technology was then developed, refined from the model 
proposed in Oates (2004), and informed by responses to the international survey. The 
complete taxonomy is not reproduced here, but a summary of the major components is 
provided in Table 1, along with some exemplars from the survey to illustrate the focus for 
each of the components. The full taxonomy describes a complex range of factors that 
should be considered for each of the six main components depicted in Table 1, and some 
examples of the factors from the Mathematical Factors and Staff Factors are provided 
later, in a closer examination of content issues (see Oates, 2009, pp. 202-203)  

An observational study of technology implementation in undergraduate courses at The 
University of Auckland over the period 2001 to 2008 was then used to examine the 
effectiveness of the taxonomy, in describing the outcomes of technology integration 
initiatives. Evidence was sought to measure the effects and significance of each of the 
factors identified in the taxonomy. Several elements of the taxonomy were found to have 
played a critical role in the comparative success of the technology implementation. More 
importantly, the findings emphasise interdependency between the elements of the 
taxonomy. The results highlight that it is essential to recognise the inter-related structure of 
the taxonomy. Oates (2009) concludes that addressing the factors in a comprehensive 
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fashion leads to higher and more sustainable levels of technology integration. “While 
attendance to some elements in isolation may obviously stimulate changes, it is difficult to 
achieve effective, sustainable technology integration through such a limited approach.” 

Table 1. 
A Taxonomy for Integrated Technology 

Taxonomy Component Characteristic Survey Response for Taxonomy Component 

Access “It has many benefits if all the students can reach almost the same 
technology; otherwise it creates important differences between 
them. I would like to see all my students using laptops, as in the 
private universities.” (Uruguay) 

Assessment “Students may use any hand held calculator, but in exams they 
must show full written working to reach the answer. Calculators 
are often used to check results”. (Australia) 

Organisational Factors “Bureaucracy slow to change. Use often isolated to single 
course.” (South Africa) 

Mathematical Factors “Less emphasis on techniques, more powerful visualisation.” 
(New Zealand) 

Staff Factors “Technology should be integrated only by staff who believe it is 
useful. Imposition of technology seems to have a negative effect 
on all involved.” (Australia) 

Student Factors “It’s difficult (for students) to make sense of the use of 
technology, especially those who had High School maths teachers 
with strong opinions against the use of technology.” (Canada) 

 

Content Issues 
Mathematical content issues associated with the use of technology have been widely 

considered in the literature at all levels of mathematics for many years, so it is thus not 
surprising that they were identified as a significant factor in the taxonomy and the 
subsequent technology implementation. The order and value of curriculum topics is 
included in the taxonomy under Mathematical Factors, together with factors such as the 
imperatives of individual subjects (e.g. specific computational software in applied 
courses); the nature of mathematics and mathematical knowledge; and the development of 
mathematical reasoning and skills. Given the interdependency between elements in the 
taxonomy, arguments about the worth of particular topics are also closely associated with 
elements under Staff Factors, such as the beliefs of staff about the nature of mathematics, 
technology and learning; the effects of these beliefs on their teaching and students 
learning; and the relationship between their specialist research domains and these beliefs 
(Norton & Cooper, 2001; Kendal & Stacey, 2001; Keynes & Olsen, 2001).  

The focus of this paper is on changes to the value of specific topics in an integrated 
technology mathematics curriculum. However, there are many other factors associated 
with content issues that are also considered in the taxonomy. For example, Schwartz 
(1999) observes that the relative importance of any particular mathematics depends upon 
who is doing the deciding, the priority they assign to the different societal aims of 
education, and their beliefs in the nature and role of mathematics in addressing those aims. 
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Holton (2005, p. 306) believes that such questions must consider and balance the needs of 
our students: “There is clearly no one right curriculum…not all students are a subset of 
those going on to PhDs in mathematics.” The order of topics is also commonly debated, for 
example when teaching calculus. The traditional approach begins with anti-differentiation. 
However, the advanced numerical methods and graphing packages that are now readily 
accessible to many students mean that we can address concrete summative problems of 
integral calculus first, following on with the more abstract notions of rates of change and 
the fundamental theorem later (Harman, 2003, p. 93). Smith (1998) describes how the 
traditional sequence of topics in teaching differential equations (the raison d’être of 
calculus) can be turned on its head using technology. The power of CAS calculators to 
“draw direction fields and model population growth using real-world data allows students 
to explore what a differential equation object is from day one” (Smith, 1998, p. 784). 
Thomas and Holton (2003) similarly describe many studies that demonstrate particular 
uses and benefits of technology for a range of topics in undergraduate mathematics, such 
as the teaching of limits (p. 370), and group theory and abstract algebra (p. 371). Another 
series of studies found that technology has the ability to improve students’ limited 
conceptualisation of Riemann integration (see e.g. Hong & Thomas, 1998). 

It is also argued that it is not the content itself, but the way in which it is taught that 
matters most (Noss, 1998; Holton, 2005). For example, it is asserted that the advanced 
graphical and algebraic features of CAS have the ability to transform the teaching of 
differential equations. King, Hillel and Artigue (2001) observe that technologies that graph 
slope fields and direction fields enable students to engage in qualitative analyses of 
previously inaccessible differential equations, rather than just the traditional analytic 
techniques. “Thus, the focus of a ‘differential equations’ course could shift from just 
finding the solution functions, to graphically organising the space of solution 
functions….and examining the nature of the solution functions” (King et al., 2001, p. 351). 
Schwartz (1999, p. 115) concludes that “for those who particularly value the importance 
of...personal growth and development of students, it is likely that the specific mathematical 
content of the curriculum will be less important than the ways in which that content is 
engaged.” While these aspects are equally accommodated within the taxonomy (Staff and 
Mathematical Factors, Oates, 2009), they will not be considered further here. 

With respect to the effect of technology on content value, Oates and Thomas (2001, p. 
83) provide a list of aspects they suggest should be considered. In addition to potential 
changes in the order of topics, they suggest that: 

• (Some) content areas may be trivialised or made redundant by the use of the graphics 
calculator. This could include for example some routine algebraic skills. 

• New content areas or richer conceptual understanding becomes accessible using the 
graphics calculator. 

• The possibility (exists) that some of the new content areas opened up by the graphics 
calculator may be trivial in nature and of limited educational value. 

Artigue (2002) and Stacey (2003) provide a means of examining such aspects, 
developing a framework that considers the pragmatic and epistemic values of individual 
topics, with Stacey adding a third pedagogical value. The pragmatic value recognises the 
usefulness of a topic, the epistemic value measures the importance of a topic’s place in the 
structure and development of mathematical knowledge, and pedagogical value considers 
whether a topic serves a purpose not related to the content itself, such as providing an 
opportunity to practice skills (Stacey, 2003, p. 6). The use of CAS may considerably 
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change the relative values of a topic, often reducing the pragmatic value, and sometimes 
questioning the epistemic value. For example, using calculus to make a linear 
approximation to a function with the formula  once had a 
pragmatic value in permitting ready approximation to the values of complicated functions. 
One could, for example, readily approximate the square root of 26.1 as 5.11 (with correct 
value 5.1088 to four decimal places) based on x = 25, whereas a by-hand calculation is 
very long. Whilst even a simple scientific calculator removes the pragmatic value of this 
formula for the student, Stacey (2003, p. 7) suggests that it still has immense epistemic 
value, because it is central to the principles underlying calculus. Another example is seen 
in differentiation of complex functions, where Stacey (2003) believes, with a few small 
provisos, that given the reliability of CAS in performing complex differentiation, the 
product-rule now has little pragmatic value. There is however a strong case for inclusion 
on epistemic grounds, because it demonstrates the connections to other concepts. Stacey 
concludes that: 

The curriculum value of topics is markedly changed by the introduction of CAS. Old justifications 
for teaching topics, especially pragmatic justifications, will not necessarily apply...The educational 
community needs to build up sophisticated rationales for curriculum areas that were not debated in 
the past. Justifications may be on pragmatic, epistemic, or pedagogical grounds. (Stacey, 2003, p. 7) 

These examples demonstrate that assessing the relative values of individual topics is a 
complex task, even for a researcher of Stacey’s considerable experience, and suggest that 
extending this across all the topics in a curriculum, and arriving at a consensus between the 
often diverse members of a mathematics department is a challenging task. However, even 
given this complexity, the contrast of responses to questions about the value of specific 
topics found in surveys and pilot interviews was surprising, and prompted a closer 
examination of this issue (Oates, 2009). The observational phase of this study included 
purposeful interviews with seven respondents drawn from staff involved in the Auckland 
implementation, and the survey of international undergraduate mathematic educators. 
Investigating views towards the relative value of curriculum topics when students have 
access to technology became a specific focus of these interviews. 

The Relative Value of Topics with Integrated Technology 
Although the restructuring of courses in 2006 was principally in response to University 

directives, Oates (2009, pp. 229-236) notes several examples, drawn from the 
observational component of the study, where the value of topics was considered during the 
restructuring process. The following extract from the revised syllabus for the principal 
first-year course lectures on “Solving Systems of Linear Equations” demonstrates the 
curricular value attached to this topic, and also reinforces the value attached to technology.  

Comments on Delivery: It is extremely important that students firmly know which matrix is in the 
reduced echelon form and which is not. They have to see lots of them. 

Technology Exercises: Students have to learn how input matrices of systems of linear 
equations…They will have to learn how to interpret the output of the command linsolve (or similar) 
to find out if a system is consistent, if it has a unique solution or not and find that unique solution if 
it exists. 

The statement also reflects one of the major benefits of technology identified in the 
literature, in presenting students with the opportunity for repeated exposure to multiple 
dynamic representations, (see e.g. Hong & Thomas, 1998; Thomas & Holton, 2003), and 
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the consideration given to the appropriate use of technology (conducting routine 
algorithmic processes). 

Another proposal for the revised differentiation lectures in the same course prescribes 
the use of technology to assist in the necessary reduction in lectures. It notes that: 

Curve sketching will be relegated to tutorials and exercises, supported with CAS. In using CAS for 
curve sketching, it is particularly important to emphasise the need to consider the critical points to 
get an idea of what interval of the domain to graph the function over. 

A further example is found in changes to the follow on second-level general 
mathematics course, where the teaching of methods of integration was cut from the 
syllabus. The restructuring proposal notes that this reduction was to be partly compensated 
for by the use of technology to perform these integrations. This latter example suggests 
that the pragmatic value of such techniques has diminished with the use of technology, 
although there is no specific evidence from the discussion documents that this concept was 
behind the decisions at the time. However, an interview response from an applied 
mathematics colleague suggests that the similar removal of techniques of solving 
differential equations from the syllabus for one course was indeed a direct result of 
technology changing the pragmatic value of a topic: 

Before computers, there used to be a big emphasis on special techniques for special differential 
equations, …students had to recognise some 15 different types of differential equation, you had no 
options, you had to solve it explicitly, there was no numerical option. You had to know the 
technique, all that’s gone, if you don’t recognise a differential equation, you whack it on a 
computer. 

The value of technology is seen here not just in its computational capabilities, but also 
in the opportunity it allows to investigate problems and develop flexible solving strategies, 
as opposed to learning a catalogue of instrumental techniques. While the transition from 
learning techniques to using technology to investigate and calculate solutions was a 
comparatively natural and uncontroversial progression at Auckland, this colleague noted 
that such an approach is by no means universal. Indeed, many textbooks still include 
specific techniques as an important part of a Differential Equations course, and these 
courses are still taught traditionally in many places. Another colleague considered 
integration by substitution as a similarly specific technique with little pragmatic or 
epistemic value in a technological environment: 

Most students can barely see how it fits, but they get used to a standard technique of putting the 
things in, … the question mathematicians need to answer now is, do such mechanistic techniques 
generalise to more general problem-solving type situations later which are going to be useful?, and I 
think the answer is no.  

The effect of technology on calculating eigenvalues and eigenvectors is seen as less 
clear by another respondent. While she concedes that some pragmatic value has definitely 
been lost with the ability of technology to compute these directly, she still perceives some 
pragmatic and epistemic value in teaching these procedures. “Matlab does not easily find 
families of eigenvectors, and often presents the results of complex eigenvectors in an 
unusual structure that requires considerable understanding from students to become 
recognisable.” Hence while students are encouraged to use technology for such 
calculations in tutorials and assignments, manual procedures are still taught and examined. 

The complexity of assessing any given topic’s value is demonstrated in the following 
four responses, drawn from a series of email exchanges leading up to the 2006 course 
changes. This exchange, which began as a response to a query from one colleague about 
students working together on assignments, sparked a passionate debate about the value of a 
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particular technique and beliefs about the nature of mathematics, teaching and technology. 
The topic was an exercise on LU factoring (a process expressing a matrix A as the product 
of two essentially triangular matrices in order to solve Ax=b): 

1.  (It’s a) bad idea to teach this obsolete, tedious LU factorisation, which no one needs 
anymore…(while) it still has some applicability, … currently no one client department needs 
it…we should give preference to teaching ideas, not techniques. 

2. The issues divide neatly between the importance of the technique and the extent to which it 
should be laboured as a teaching item. The topic is intrinsically important because it is at the 
centre of all practical scientific computation…Is it important as a teaching item? Sometimes a 
mathematical concept has to be introduced without a directly practical application…I 
personally think that the opportunity to introduce LU with pivoting is like finding a flower in 
the desert. 

3. This flower unfortunately has to be uprooted, together with integration by trigonometric 
substitution and other techniques which have lost relevance for the wider audience. A regular 
person with regular needs will be much better off using Maple. Such techniques should be 
taught in specialised courses…It takes too much precious time which can be better spent on 
building understanding. 

4. I believe that a good portion of (any) honest technique is useful for students learning 
mathematics, as a training of ability for prolonged logical concentration. Separating learning of 
ideas from learning of adequate technical support looks similar to learning by heart a French 
song without learning French language. 

Questions about the pragmatic and epistemic value of LU factorisation are clearly 
evident in this debate. Some see little pragmatic value remaining in this topic, and are 
happy to see the responsibility assumed by technology, others believe strongly in the 
epistemic and pedagogical value. Several studies consider ways in which technology may 
possibly be used to resolve such conflicting arguments. Hillel (2001) illustrates this with an 
activity using CAS to perform elementary row reductions on the coefficient matrix of a 
relatively large homogeneous system with non-trivial solutions. The purpose of the activity 
is clarification of theory covered in class: 

Grasping the relation between elementary row operations and equivalent systems is the key notion, 
not the actual procedure for row-reducing matrices. Once understood, I see no reason why students 
should not be given free rein to use CAS and go directly to row reduced echelon form of a matrix 
without actually performing the row operations (and later, to go directly from a system of equations 
to a CAS-generated solution). (Hillel, 2001b, p. 374) 

LaTorre (1993, p. 306) describes a similar process using CAS to perform all the 
individual steps of solving a system of linear equations, observing that in this manner, 
students “control the whole process from start to finish by deciding when and where to 
pivot, which row interchanges to make, and then effect back substitution interactively. The 
calculators carry only the computational burden”. Both these examples suggest a reduction 
in the pragmatic value of Gaussian elimination with technology, but both clearly believe 
that the procedure retains its epistemic value in aiding students’ understanding. However, 
as witnessed in the email debate about LU factorisation, and the examples presented earlier 
by Stacey (2003), reaching consensus on exactly which elements of a particular topic may 
retain their pragmatic or epistemic value and which may be assigned to technology is a 
difficult task, which often depends on who is making the decision (cf. Schwartz, 1999; 
Holton, 2005). This was confirmed in interviews, with respondents’ beliefs about the value 
of Gaussian elimination differing considerably in some respects. All agreed that there is 
significant reduction in the pragmatic value, although one respondent believes that some 
pragmatic value is retained when the system has none or infinite solutions, as many CAS 
platforms do not distinguish these. There was also some agreement that technology was not 
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always of benefit, especially for weaker students for whom learning is often reduced to a 
mechanical process. For such students, technology may exacerbate the problem as they 
become overly reliant on it, or be of little use if they do not know when its use is 
appropriate. One subject observes with respect to his marking of examination questions on 
Gaussian elimination that: 

The main problem doesn’t seem to be that they can’t do the operations (for which the calculator can 
help them); it’s that they don’t know what operations to do. They’ll do three pages of working and 
still won’t have any zeros in their matrix…the students don’t understand what the goal is. I’m not 
sure how technology can help with this. 

While one interview candidate was completely comfortable with students’ using 
technology to directly calculate row-reduced matrices, another saw little educational value 
in such use. The former used the analogy of driving a car without knowing how it works to 
illustrate his point. The technological “black-box that provides a solution to a set of linear 
equations is probably all most people need”. The latter sees little value in technology for 
the more important role of developing critical thinking and effective problem-solving 
strategies: 

Depends what one wants, I can’t see how a student can understand the process by pushing a button, 
it may be OK for an engineer who just needs a seriously good program to provide the numbers at 
the end, they don’t need to know anything about Gaussian elimination, …but most students haven’t 
got a clue what their answer means, they know nothing more about their solutions than that they are 
a result of what they do. 

He sees little pragmatic value for Gaussian elimination in such an environment, 
regardless of whether technology is used. Students who have learnt to row-reduce 
flawlessly without technology are frequently no better off than those who perform the 
operations using a calculator, so technology is seen as having no significant learning 
advantage other than to save time, check on working or avoid arithmetic errors. 

Conclusion 
These discussions demonstrate that, notwithstanding the holistic consideration of the 

taxonomy as advocated by Oates (2009), content issues were a significant factor in the 
technology implementation at The University of Auckland. Reaching consensus on the 
relative values of topics in the undergraduate mathematics curriculum was especially 
problematic. The findings of this study support the complexity of assessing the values of 
topics as described by Stacey (2003), and the conclusion by Oates (2009, p. 242), that “a 
re-examination of the changing pragmatic and epistemic values of specific topics, and the 
goals of mathematics education, within a rapidly evolving technological environment, 
remains a pressing challenge for undergraduate mathematics educators.” 
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